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The ~~~ble~ of realizing the t~~s~~~t response is often solved sepa- 
rately from the problem of realizing a given trajectory. This means that 
ff the initial condition does not coincide with the initial position of 
the trajectory being realized, then, at first the transient response 

which permits us to hit onto the trajectory is produced by one method 
and then the problem of realizing this trajectory is solved by another 

method (see, for example, [I] 1. Here we shall consider a ‘method, using 
the results of Bsrbashin f2-41 on the anproximate realfxatton of a tra- 
jectory, arhlch allows us to sa’fve these problems by a single method. The 
main paint of the proposed method consists of the following. It is con- 
sidered that by some means there Is given a famEly of tr~s~e~t curves 
determining a directfcn field in the phase coordinate space. The given 
sgetem of differential equations also determines some direction field 
which depends on control functions. The control functions are then found 
from the conditions of minimieation at each instant of time of the square 
of the deviation between corresponding vectors fram the two above- 
mentioned direction fields. 

1. We shall consider the system of differential equations 

Her43 b,, are constants, uk are scalar control, functions which may de- 
pend both on time and on the phase coordinates. Xn matrix form system 
(1.1) can be written in the f02lowing way: 

dx I dt = R (t) x -I- Bu (3.2) 
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where A(t) is an 11th order square matrix, B is a rectangular matrix of 

order n x m. Y/e shall assume that the rank of B is m, or, equivalently, 

that the vectors b,(b,,, ,.., b,,, ), forming the columns of matrix B, are 

linearly independent. 

Men t0 < t < ~0, let there be given the curves xi = vi(t), (i = 1, 

. . . , n), or, in vector form x = v(t). In the phase coordinate space we 

shall consider that there is given somehow a certain n-parameter family 

of curves 

f (x0, z, t) (1.3) 

I!ere, the coordinates of vector x0 themselves represent n of the para- 

meters, to Q T Q t < m, and the time T is determined from the condition 

that each curve of family (1.3) is found to be at the point x,, at the 

instant 7, i.e. 

f (x0, t, t) = 20 (1.4) 

'ILe curves from family (1.3) will be called transients. It will be 

assumed that n = y(t) belongs to family (1.3). It is then understood that 

ftU(T),'TT, t) = y(t). For any fixed x0 and T we shall consider the func- 

tion f(x,, 7, t) to be piecewise-continuously differentiable with respect 

to t. Then, under very broad conditions, family (1.3) can be considered 

as the solution of a certain system of differential equations 

$ = F (f, t) d t < 00) (1.5) 

where, in general, F(f, t) is a piecewise-continuous function of t. In 

what follows it is natural to choose a family f(x,,, T, t) such that each 
curve in it infinitely approximates to t!le curve y(t) as t - a. In order 

to fulfill this condition the solution y(t) of system (1.5) should be 

globally asymptotically stable. 

If the initial point x0 = n(t,,) of system (1.2) does not coincide 

with the point y(t,,), then we are faced with the problems of reall,:ng 

the transient response and the given response y(t). We shall solve these 

problems by a single method, using the transient curves of family (1.3) 

which has been introduced. 

For this we can select control functions ui(t) such that the solution 

x(t) of system (1.21, determined by the initial condition x(t,) = x0, 
will be some approximation of the transient curve f(n,,, to, t) from 

family (1.3). Since the initial point of this curve and the initial posi- 

tion of system (1.2) coincide, then, the control functions can be 

selected as was done in [2,31. In [21 it was proved that the control 
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functions are determined from the system of equations 

5 (bk, h) ui (t) = lF (t), bk) 
i-1 

(k=l, . ..( m) (1.6) 

where (bk, 
function is 

bi) is the scalar product of vectors 

= to, t) - A (t) f 

However, if the number of control functions m < n, then after as 

small as desired interval of time At, the position x(tO + At) determined 

by system (1.2)) in general, 

t,, + At). IIowever, 

will not coincide with the point f(xO, tO, 

the transient curve f(x(t,, + At), t,, + At, t) of 

family (1.3) will pass through the point x( t, + At). ‘iherefore, at the 

instant t0 + At it is natural to solve the problem of realizing tile tra- 

jectory f(x(t,, + At), t,, + At, t), and, in correspondence with this, to 

find the control functions ui(t) front Equation (1.7). I3y proceeJing in 

this manner for each interval of time At, we shall find the control func- 

tion u(t) from equations of form (1.6) by substituting the corresponding 

transient curve from family (1.3) for the vector function r(t). 

We shall assume that the time interval At is infinitesimal. At the 

instant -r let the trajectory of system (1.2) pass through the poini X(T). 

l%en, in order to find control U(T) at each instant of time T, we should 

solve the problem of realizing the transient curve f(zx(~), T, t). In 

this case, control u is found as the function fI(x(T), -r) from the follow- 

ing system of linear equations: 

m 

z) (bk, hi) ui tz (z), r) 
i=1 

= (F (z (t), Tf), bk) (1.7) 

Here 

F (z (z), T’) = af(z(;;v ” t, Itcr - A (z) f (cc (z), z, z) 

or, by virtue of (1.4)) it follows that 

F (z (z), z) = ” (’ ‘$’ ” t, jtzr - A (Z) 2 (Z) (1.8) 

i?y taking into account that X(T) is the solution of system (1.2), we 

can consider that the control obtained from Equation (1.7) is a function 

u(x, T) of the phase coordinates and of time. Formally, u(x, T) can be 

obtained from Equation (1.7) by reckoning t!iat x(-r) does not depend on 

T. The very same control u(x, T) can be obtained from the condition of 
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best square approximation, at each instant of time T, of the velocity 
vector of trajectory f(x, -r, t) by the velocity vector of the solution 

of system (l.?). In fact, in this case we should select the control 
function u(x, -r) such that the quantity 

II A (z) 5 + Bu - af (x;tr’ t, 

is minimized. 

3y the same reasoning as in [z] ;, accordin; to [5, p. 2.051 , it is not 

difficult to prove that the desired control U(X, T) should satisfy 
system (1.7). If the family of transient curves (1.3) is given as the 

solution of system (1.5), then 

and system (1.7) is rewritten as 

(k=i, . . * 9 4 (1.10) 

Formulas (1.7) and (1.10) are simple when the system of vectors 

b 1, a*., b, is orthonormal. Then 

Remark 1. It was assumed above that the given curve v(t) belongs to 

the family of transient curves. It is not always natural to impose such 

a condition on the choice of family (1.3). It can be considered that the 

transient curves will reach curve w(t) in finite intervals of time, and, 

in this connection, the derivatives of the transient curve and of curve 

\y( t) do not coincide at the instant of contact. In this case if the tra- 

jectory of system (1.2) by virtue of controls found from Equations (l.?), 

will reach curve v(t) in a finite interval of time, and if we cc-tinue 

to make use of these controls further, then, in practice, we obtain a 

sliding state. 

Remark 2. Let there be given a nonlinear system of differential equa- 

tions 

dx 
dt = UJ (x, t) + Bu (1.12) 

the curve y(t), and the family of transient curves (1.3). We shall 

select u( X, T such that the quantity 
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which has the same meaning as quantity (1.9), is minimized at each in- 

stant of time. Then, for example. if the system of vectors b,, . . . , b,,, 

is orthonormal, and if family (1.3) is given as the solution of the 
system of differential equations (X.5). we shall have 

Let us consider an example. It will be assumed that curve y(t) and 
system (1.2) are given. The family of transient curves is obtained as 
the curves of pursuit for curve y(t). By assuming that the absolute 
value of the velocity of the pursuit curve is known, and is some scalar 
function v(t), we find the system of differential equations which is 
satisfied by the pursuit curve. From Fig. 1 it is obvious that 

or 

II, (t) - f 0) f’ 0) _ 
II 9 w - f (0 II 2) 6) 

df 
dt= ,,~(t;!?fIt),, [~(t)---f(t)l 

Fig. 1. For simplicity we assume that the system of 

vectors b,, . . . . ba is orthonormal. Then, the 
controls are found by Formulas (1.11) 

2. Let us consider in more detail the case when the family of 

transient curves f(xa, t, , t) is given as the solution of a certain 

system of linear differential equations 

df I dt = Cf - C$ -+- d$ / dt (2.4) 

Jiere C is a square matrix which, in general, depends on time. It is 

clear that y(t) is a solution of this system, If matrix C is such that 
the homogeneous system corresponding to system (2.1) is asymptotically 
stable with respect to the origin, then v(t) is an asymptotically stable 

motion of system (2.1). ft is not difficult to find the control function 
for system (1.2) from Equations (1.10) by substituting into them the 
right-hand side of system (2.1) instead of r(x, t). If the system of 
vectors b,, . . ., b, is orthonormal (for simplicity in what follows this 



Approximate realization of rcsponsoa 943 

will be assumed to be the case), then the control functions are found in 
the form 

z&i (2, t) = (c (x -9) + $- AX, bi) (i--1, .,. , m) (2.2) 

If in Equation (2.f), the matrix Aft) is chosen as matrix C(t), then 
controls (2.2) (and also those found from Equations (1.10)) will be 
identical to the controls obtained in c2f. Thus, in the particular case 
when C(t) E A(t), the controls found in 121 approximate the curve v(t) 
by the family of transient curves which are the solutions of the linear 
system of differential equations (2.1). By substituting Equatian (2.2) 
into system fl.l), we obtain the following system of differential 
equations: 

2 = i 4% tt> xk + 5 ([c - A] 5, bk) bik + jjl (3 - c$, bk) bik 
k=F k=l 

(i=1,....w) 
Gw 

In system (2.3) we make the change of variables z = x - y(t)= 'Ihen we 

have the new system of equations 

which can be rewritten in the matrix form 

Here 

Let rg = x0 - y(ta). Then the solution z(t) of Equation (2.5) can be 
found by the Cauchy formula 
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- = [A $D (C - A)] 2 = Hz 
dt (H = A + D (C - A)) (2.7) 

which corresponds to system (2.5), and the vector-function Y(T) has the 
form 

Let us clarify the possibility of reducing the deviation z(t). Let us 
note that the vector-function y(t) does not depend on the choice of 
family prescribed in the form (2.1) (i.e. in the final analysis, does not 
depend on the choice of matrix C), and it, consequently, can be obtained 
if in JXquation (2.1) we use matrix A for matrix C. Therefore, in accord- 

ance with [2], we can write 

11 Y (t) 11 = Tin 11 gl biui -I- A (0 9 - 4 (4 11 
1 

and the function )I y(t) 11 cannot be further minimized by means of choice 
of matrix C. Wit the fundamental matrix of system (2.7) does depend on 
matrix C, and the latter must be chosen within the limits imposed upon it 
such that the deviation z(t) is small. 

Ibis 
tion of 
geneous 
control 
system 

can be attained by imposing on the choice of matrix C the condi- 
improvement in some sense or other of the solutions of the homo- 
system (2.7). Ibis example can be regarded as an automatic 
system. In fact, if v(t) s 0, system (2.7) is equivalent to the 

dx 
dt= 

AZ+ 5 ((C - A) 5, bJ bi 
i=l 

(2.8) 

‘Ibe functions ui(x) = ((C - A) n, bi) will be control functions in 

which the elements of matrix C occur as parameters. In the case matrices 
A and C are constants, there exist methods of selecting the parameters in 
such a manner (here the parameters are the elements of matrix C) that in 
some sense or other they allow us to improve the transient response of 
the automatic control system (2.8). Thus, for example, we can take 
advantage of the ideas of [6,71. W e can also choose the elements of 
matrix C in this computation such that the degree of stability [8I of 
system (2.7) is increased. 
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Remark. In Equation (2.8) let a = 1, i.e. we have the equation U(X) = 

((C - A)%, b), where btb,, . . . , b,,) is an n-dimensional vector. It turns 

out that the elements of matrix C can always be chosen such that by 
virtue of (2.8) with these controls the Integral [Sl 

is mininlzed. 

In fact, in [Sl the equation of such a control was found in the form 

u = plxl + . . . + pnxn. In view of the arbitrariness of the variables 

Xl, . . . t %,r the equality ((C - A) x, b) = plxl t . . . t p,x, reduces to a 

system of nth order equations with n* unknowns c ih which will be the 

elements of matrix C. Since bl* + . . . + b,,* # 0. It Is not difficult to 
see that the obtained system of linear equations can always be solved 

with respect to cik’ 

Example. Let us consider the equation ;’ + ai + bx = u, which is equi- 

valent to the following system of equations 

. 
2= Y. y=-bz-ay+u (2.9) 

With respect to curve I+J( t) let us assume that it degenerates to the 

origin of coordinates. Then, if the family of transient curves is given 
as the solution of the system of equations 

the control has the form 

u (2, Y) = (en + 4 x + (cm + 4 Y 

BY substituting this control Into system (2.9) we obtain 

; = y, Y=hl~+w 

We shall choose the parameters Cam, c2* so as to increase the degree 
of stability. It is clear that on matrix C (see expressions (2.2), (2.7), 
(2.8)) some relat!ons should be Imposed associated wfth restrictions 
placed on the controls, and to the fact that systems (2.7) and (2.8) must 
be asynptotlcally stable at the origin. But these restrictions cannot 
eliminate the choice of matrix A for C, since for such a choice the 
control function in system (2.8) will be identlcall~ zero. In our example 
we shall consider that parameters c2 and c2* are bounded in modulus by 
the number N, where N > max (1, 1 aI, / bl). BJ immediate calculation we 
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convince ourselves that the highest degree of 

system is attained when czl = - N, c2g = - N, 
c2.J = - 24 N. if N > 4. 

stability in the given 

if N ~4, and when ~~~~-1, 

3. For simplicity in the subsequent reasoning 
A and C are constant. Formula (2.6) then becomes 

we assume that matrices 

z (1) = F (t) zo + F (t - z) y(z) dz (3.1) 
to 

By using this formula it is not difficult to obtain an estimate for 
the deviation t(t): 

where fikf t) are elements of the fundamental matrix F(t), and If x 11 in 
the given case is equivalent to maxijxi/. From Expression (3.2) itCis 
seen that the decrease in deviation 11 z(t) 11 is connected with the de- 
crease in the elements of the fundamental matrix of the solutions of 

system (2.7). 
of [lo]. Here, 

To estimate the elements fik(f) we make use of the results 
for convenience, we derive certain results of this paper 

in the necessary form. 

Let there be considered a system of linear, homogeneous differential 
equations 

dx/dt =Hx (3.3) 

We shall consider that matrix H does not depend on time. Let G(X) be 

a positive-definite quadratic form, g(x) = dG/dt by virtue of (3.3). and, 
finally, N = max g(x) when G(X) = 1. Then, for any coordinate of solution 

x(te, x0; t) of system (3.3), the following inequality 

V,!?\ 
I x8 (to, x00; $1 Iad G (4 7 e 

M(f-4,) 
(s=i,. . , IL; t”<t<<} (3.41 

‘z 

is satisfied. 

Here V, is :“,I determinant of the matrix corresponding to quadratic 
form C, and Va_ I is the minor of order a - 1 obtained from determinant 
V,, by deleting the 8th row and the 8th column. We shall consider that 
matrix C is chosen such that the origin is asymptotically stable for 
system (2.7). As g let us choose the negative-definite quadratic form 
g(x) = - (x, x) = - (x, Ix), where I is the identity matrix. Since system 
(2.7) is asymptotically stable with respect to the origin, we define the 
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positive-definite quadratic form G(x) = (x, VX) such that dC/dt 

virtue of (2.7). The matrix V can be found [5, p. 4291 from the 
equation 

= g by 
matrix 

H*V+VH= I 

In the given case 

(H=A+D(C--A)) (3.5) 

N = max [-(x, Ix)] = max 
(xv - Ix) - Ix) 

GM)=1 (x. Vx)=1 (x, Vx) 
= max (yi, Vr) 

Further, it is not difficult to see [5, P. 2571 that N = - l/cl, where 
~1 is the maximum eigenvalue of matrix V. By using Expression (3.4) for 
the elements of the fundamental matrix of the solutions of system (2.7). 
we can obtain the estimate 

Ifik(t)la<G(ek) y ( exp - 
n 

$-(t-to)) 
where ek is the unit coordinate vector. The expression occurring on the 
right-hand side of inequality (3.6) is a function of the elements of 
matrix C. By minimizing this function under some restriction on the ele- 
ments of matrix C, we can achieve the reduction of the elements of the 
fundamental matrix of system (2.7). along with the reduction in deviation 

II x(t) II * 

4. Now, on the right-hand sides of system (1.2) let there act per- 
sistent perturbations; then this system will have the following form 

dx 
x=Ax+Bu+cp(t) 

where the vector ‘p(t) = (q,(t), . . . , qn( t)). The family of transient 
curves is given as the solution of the system of differential equations 

df/dt=Cf (4.2) 

For simplicity let us consider that v(t) E 0. For this case. by 
minimizing quantity (1.9). i.e. the quantity 11 AZ + Bu + cp( t) - CX 11, we 
find that 

Ui (x, t) = ((C - -4) 5 - cp, bi) (i = 1,. . ) m) (4.3) 

Let us now turn our attention to the case when the control function 
(4.3) can be qomputed by knowing the amount of perturbation only at 
given instants of time t. Without any difficulty whatsoever in the con- 
struction of the control functions, this permits us to consider systems 
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subject to random perturbations. Fe shall divide every one of the control 

functions (4.3) IntO two parts Ui (1) t p. 

I+(l) (2, t) := ((C - ‘4) I, zq), @(t) = (- cp, bt) 

The function .i”‘(x, t) will not depend 
on t if matrices A and C are constant. The 
block diagram which is described by Equa- 
tion (4.1) is shown in Fig. 2. Here A is 
the object of control which realizes the re- 

auired.response, B ie the corrective device. 
C is the feedback element. The pertarba- 

Fig. 2. tions 9(t) enter into A. 

At the seme time they are fed into the corrective device B which 

selects the oontrol action .i(*’ (t). The feedback element C selects the 

feedback signal si(‘)(x. t). If it is required to realize some trajectory 

yr(t) using a system (4.1) subject to random disturbances, then the control 

action will have the following form 

I+) (t) = 2 - C$ - tp, b,) ( 
and the feedback signal remains the same. As was shown in Section 2, the 

behavior of trajectory yl( t), and also the constantly acting perturbations 
q(t), do not influence the choice of matrix C which is connected only 
with system (1.2) itself and can be made beforehand in any fashion what- 

soever. 

The author thanks E.A. Barbashin for attention and guidance while 

carrying out this worb. 
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