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The problem of reslizing the transient response is often solved sepa-
rately from the problem of realizing a given trajectory. This means that
if the initial condition does not coincide with the initial position of
the trajectory being realized, then, at first the transient response
which permits us to hit onto the trajectory is produced by one method
and then the problem of realizing this trajectory is solved by another
method (see, for exanmple, [1]). Here we shall consider s hethod, using
the results of Barbashin [2-4] on the approximate realization of a tra-
ijectory, which allows us to solve these problems by 2 single method. The
main point of the proposed method consists of the following. If is con-
sidered that by some means there is given a family of transient curves
determining a direction field in the phase coordinate space. The given
system of differential equations also defermines some direction field
which depends on control functions. The control functions are them found
from the conditions of miniwization st each instant of time of the square
of the deviation between corresponding vectors from the two above-
mentioned direction fields,

1. We shall consider the system of differential equations

dz i <
"'E_ti=2aik (t}vx&‘l—gbikuk (I‘-:*:‘i, cen s B m»&’n) {i.i)
k=1 k=)

Here &ii are constants, u, are scalar control functions which may de-
pend both on time and on the phase coordinates. In matrix form system
{1.1) can be written in the following way:

dz/dt = A (f) = + Bu (1.2)
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where A(t) is an nth order square matrix, B is a rectangular matrix of
order n x m. We shall assume that the rank of B is m, or, equivalently,
that the vectors b,(b;,, ..., b,,), forming the columns of matrix B, are
linearly independent.

Vhen ty <t <o, Jet there be given the curves x; = wi(t), (¢ =1,

., n), or, in vector form x = y(t). In the phase coordinate space we
shall consider that there is given somehow a certain n-parameter family
of curves

f(xg, T, 0) (1.3)

Hflere, the coordinates of vector x, themselves represent n of the para-
meters, t, < T <t < o, and the time T is determined from the condition
that each curve of family (1.3) is found to be at the point x, at the
1nstant T, 1.e.

f(xg, T, 1) = 7 (1.4)

The curves from family (1.3) will be called transients. It will be
assumed that x = y(t) belongs to family (1.3). It is then understood that
fly(x), 1, t) = 9(t). For any fixed x, and T we shall consider the func-
tion f(xy, T, t) to be piecewise-continuously differentiable with respect
to t. Then, under very broad conditions, family (1.3) can be considered
as the solution of a certain system of differential equations

A —Fit, 1 (fo < £ < o0) (1.5)

where, in general, F(f, t) 1s a piecewise-continuous function of t. In
what follows it is natural to choose a family f(xo, T, t) such that each
curve in it infinitely approximates to the curve y(t) as t - ©, In order
to fulfill this condition the solution y(t) of system (1.5) should be
globally asymptotically stable.

If the initial point x, = x(¢;) of system (1.2) does not coincide
with the point y(t,), then we are faced with the problems of reali.’ng
the transient response and the given response y(t). We shall solve these
problems by a single method, using the transient curves of family (1.3)
which has been introduced.

For this we can select control functions u,(t) such that the solution
x(t) of system (1.2), determined by the initial condition x(ty) = x
will be some approximation of the transient curve flxy, ty, t) from
family (1.3). Since the initial point of this curve and the initial posi-
tion of system (1.2) coincide, then, the control functions can be
selected as was done in [2,3]. In [2] it was proved that the control
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functions are determined from the system of equations

D b)u () =@, b) =t ...m (1.6)

where (bk' bi) 1s the scalar product of vectors b, and b,, and tie vector
function 1is

r (t) = fl, (xo, t07 t) - A (t) f

However, if the number of control functions m < n, then after as
small as desired interval of time At, the position x(t; + At) determined
by system (1.2), in general, will not coincide with the point f(x,, ¢
to * At). However, the transient curve f(x(t0 + At), ty * At, t) of
family (1.3) will pass through the point x(t, + At). Therefore, at the
instant t, + At 1t is natural to solve the problem of realizing the tra-
jectory f(x(t, + At), t, + At, t), and, in correspondence with this, to
find the control functions u;(t) from Equation (1.7). By proceeling in
this manner for each interval of time At, we shall find the control func-
tion u(t) from equations of form (1.6) by substituting the corresponding
transient curve from family (1.3) for the vector function r(t).

0’

We shall assume that the time interval At i1s infinitesimal. At the
instant T let the trajectory of system (1.2) pass through the point x(T).
Then, in order to find control u(7) at each instant of time T, we should
solve the problem of realizing the transient curve f(x(v), 7, t). In
this case, control u is found as the function u(x(7), 7) from the follow-
ing system of linear equations:

m

D (b bs) uy (z (%), ¥) = (7 (z (¥), 7), by) (1.7)

i=]

Here

of (z (1), T, t)

r(z(t), )= a0 — AW/ (z(1), 7, 7)

t=1
or, by virtue of (1.4), it follows that

rz(), 7y =2 EE %Y

n — A(t)z (1) (1.8)

=<

Dy taking into account that x(T) is the solution of system (1.2), we
can consider that the control obtained from Equation (1.7) is a function
u(x, 7) of the phase coordinates and of time. Formally, u{x, 7) can be
obtained from Fquation (1.7) by reckoning that x(v) does not depend on
1. The very same control u(x, T) can be obtained from the condition of
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best square approximation, at each instant of time 7, of the velocity
vector of trajectory f(x, T, t) by the velocity vector of the solution
of systen (1.2). In fact, in this case we should select the control
function u(x, 7) such that the quantity

n

W I bR C I

i=1
1s minimized.

By the same reasoning as in [2], according to [5, p. 205], it is not
difficult to prove that the desired control u(x, ) should satisfy
system (1.7). If the family of transient curves (1.3) is given as the
solution of system (1.5), then

of (z, 1, t)

3t =t F(.’t, T)
and system (1.7) is rewritten as
2 (b bi) u: (7, T) = (F (2, 1) — A (1) 2, by) k=1, ..., m)(1.10)

=1

Formulas (1.7) and (1.10) are simple when the system of vectors

by, ..., 0, is orthonormal. Then

u; (IL‘, t) = (I‘ (zv t)» bl) (111)

Remark 1. It was assumed above that the given curve y(t) belongs to
the family of transient curves. It is not always natural to impose such
a condition on the choice of family (1.3). It can be considered that the
transient curves will reach curve w(t) in finite intervals of time, and,
in this connection, the derivatives of the transient curve and of curve
y(t) do not coincide at the instant of contact. In this case if the tra-
jectory of system (1.2) by virtue of controls found from Equations (1.7),
will reach curve y(t) in a finite interval of time, and if we cc~tinue
to make use of these controls further, then, in practice, we obtain a
sliding state.

Remark 2. Let there be given a nonlinear system of differential equa-
tions

dx
T =@ (z, t)+ Bu (1.12)

the curve y(t), and the family of transient curves (1.3). We shall
select u(x, T such that the gquantity
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“‘D(”' T)*’rBu._?_I_(_xJé:_vt_)_

=<

which has the same meaning as quantity (1.9), is minimized at each in-
stant of time, Then, for example, if the system of vectors bl, ..., b

is orthonormal, and if family (1.3) is given as the solution of the
system of differential equations (1.5), we shall have

Uz, V=(Fz, )—O(, 1), b,

Let us consider an example. It will be assumed that curve y(t) and
system (1.2) are given. The family of transient curves is obtained as
the curves of pursuit for curve y(t). By assuming that the absolute
value of the velocity of the pursuit curve is known, and is some scalar
function v(t), we find the system of differential equations which is
satisfied by the pursuit curve. From Fig. 1 it is obvious that

wit
vO—f® _ 10
ey —71@) v (8)
or df 2 (2) .
g & = Tem—rof o=/l
0
Fig. 1. For simplicity we assume that the system of
vectors bl' vy bn is orthonormal. Then, the
controls are found by Formulas (1.11)

u,(z, 1) = (ﬁ)‘%)(%ﬂt“ (p @) —z)— A(t) 2, bi>

2. Let us consider in more detail the case when the family of
transient curves f(x,, t,, t) is given as the solution of a certain
system of linear differential equations

df 1 dt = Cf — Cy -+ dp/ dt (2.1)

Here C is a square matrix which, in general, depends on time. It is
clear that y(t) is a solution of this system. If matrix C is such that
the homogeneous system corresponding to system (2.1) is asymptotically
stable with respect to the origin, then y(t) is an asymptotically stable
motion of system (2.1). It is not difficult to find the control function
for system (1.2) from Equations (1.10) by substituting into them the
right-hand side of system (2.1) instead of F(x, t). If the system of

vectors b,, ..., b, is orthonormal (for simplicity in what follows this
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will be assumed to be the case}, then the control functions are found in
the form

w (2, 8) =(C (2 — ) + 3L — 4z, b)) G=1,...,m (22

If in Equation {2.1), the matrix A(t) is chosen as matrix C(t), then
controls (2.2) (and also those found from Equations (1.10}) will be
identical to the controls obtained in [2]. Thus, in the particular case
when C(t) = A(t), the controls found in [2] approximate the curve w(t)
by the family of transient curves which are the solutions of the linear
system of differential equations (2.1). By substituting Equation (2.2)
into system (1.1}, we obtain the following system of differential
equations:

dz, 2 - <
Fr= Daumt+ D 1C— A1z, bba+ 3 (22— Cp, be) ba
K==t k=1 k=1
=1 ...,n (2.3)

In system (2.3) we make the change of variables z = x — y(t). Then we
have the new system of equations

d k2 ™m
—;;i == 2 aw () 2 + 2 (IC— Al z, by) b +
¥=1 k=1
n d . m
+ X an@pe ()~ + 2 (22— g, by b (2.4)
k=1 k=1

which can be rewritten in the matrix form

%:{A+§(CwA)}z+A\P“%?“+2(%“ﬁ‘?*éi)% (2.5)

==l
Here

b3 buba . . L byb

i b b. 5.2 b..b.
D FP g i2 L
E Di& D;=

el

| Binbiy  binbis . . . bin
Let zy = xy - ty(to)‘ Then the solution z(rt) of Equation (2.5) can be
found by the Cauchy formula
t
2(t) = F () 20 + SF () F' (1) y (v) dv (2.6)

&
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Here F(t) is the fundamental matrix of the solutions of the homo-
geneous system of equations

L —[4+D(C—A)z=H:z (H=A4+D(C—-4) (27

which corresponds to system (2.5), and the vector-function y(t) has the
form

y(v) = ap— 2 1+ 3 (2 — 4y, b) b,
1=1

Let us clarify the possibility of reducing the deviation z(t). Let us
note that the vector-function y(t) does not depend on the choice of
family prescribed in the form (2.1) (i.e. in the final analysis, does not
depend on the choice of matrix C), and it, consequently, can be obtained
if in Equation (2.1) we use matrix A for matrix C. Therefore, in accord-
ance with [2], we can write

Iy @)1 = min| 3 b + 4 Q% — ()

i i=1

and the function || y(t)|| cannot be further minimized by means of choice
of matrix C. But the fundamental matrix of system (2.7) does depend on
matrix C, and the latter must be chosen within the limits imposed upon it
such that the deviation z(t) is small.

This can be attained by imposing on the choice of matrix C the condi-
tion of improvement in some sense or other of the solutions of the homo-
geneous system (2.7). This example can be regarded as an automatic
control system. In fact, if ¢(t) = 0, system (2.7) is equivalent to the
system

& — A+ (€ — Az, b b (2.8)

i=1

The functions u;(x) = ((C - A)x, b;) will be control functions in
which the elements of matrix C occur as parameters. In the case matrices
A and C are constants, there exist methods of selecting the parameters in
such a manner (here the parameters are the elements of matrix C) that in
some sense or other they allow us to improve the transient response of
the automatic control system (2.8). Thus, for example, we can take
advantage of the ideas of [6,7]. We can also choose the elements of
matrix C in this computation such that the degree of stability (8] of
system (2.7) is increased.
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Remark. In Equation (2.8) let m =1, i,e. we have the equation u(zx) =
((C - A)x, b), where b(bl. cees bn) is an n-dimensional vector. It turns
out that the elements of matrix C can always be chosen such that by
virtue of (2.8) with these controls the integral [9]

(o] n
J (u) = S (2 a2+ cu') dt
0 k=1
is minimized.

In fact, in [9] the equation of such a control was found in the form

u=pyx; + ... %+ p.x . In view of the arbitrariness of the variables
X1y vees Zp the equality ((C - A)x,zb) = plzl A 3 Ppx, reduces to a
system of nth order equations with n unknowns ik which will be the
elements of matrix C. Since b een 2 40, it is not difficult to

see that the obtained system of linear equations can always be solved
with respect to ik

Ezample. Let us consider the equation x + ex + bx = u, which is equi-
valent to the following system of equations

r=y, y=—bzr—ay+u (2.9)

With respect to curve y(t) let us assume that it degenerates to the
origin of coordinates. Then, if the family of transient curves is given
as the solution of the system of equations

g=cnz+ouy,  Y=cnT+cny

the control has the form

u(@, y)=(m+bz+(ntay

By substituting this control into system (2.9) we obtain
z=y, y=cnz + ony

We shall choose the parameters €31+ Cpq 8O 88 to increase the degree
of stability. It is clear that on matrix C (see expressions (2.2), (2.7),
(2.8)) some relations should be imposed associated with restrictions
placed on the controls, and to the fact that systems (2.7) and (2.8) must
be asymptotically stable at the origin. But these restrictions cannot
eliminate the choice of matrix A for C, since for such a choice the
control function in system (2.8) will be identically zero. In our example
ve shall consider that parameters c,; and ¢y Gre bounded in modulus by
the number N, where N > max {1 |a| 16'}. By immediate calculation we
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convince ourselves that the highest degree of stability in the given
system is attained when cgy = - N, €g9 = — N, if ¥ <4, and when ¢

21~ 1
cgp =~ 2V N, if N> 4.

3. For simplicity in the subsequent reasoning we assume that matrices
A and C are constant. Formula (2.6) then becomes

4

z(t):F(t)zo—{-SF(t——’r)y(’r)d'r 3.1)
tq

By using this formula it is not difficult to obtain an estimate for
the deviation z(t):

H
Izl maXZIfk(t)leoﬁc SmaxZI)‘m(t—r)IllJ('f)lldf (3.2)

to k=1

where f. k(t) are elements of the fundamental matrix F(t), and H x|!

the given case is equivalent to max. I I From Expression (3.2) it is
seen that the decrease in deviation [Iz(t) H is connected with the de-
crease in the elements of the fundamental matrix of the solutions of
system (2.7). To estimate the elements f,, (t) we make use of the results
of [10]. Here, for convenience, we derive certain results of this paper
in the necessary form.

Let there be considered a system of linear, homogeneous differential
equations

dr | dt = Hz (3.3)

We shall consider that matrix H does not depend on time. Let G(x) be
a positive-definite quadratic form, g(x) = dG/dt by virtue of (3.3), and,
finally, N = max g(x) when G(x) = 1, Then, for any coordinate of solution
z(tg, xg, 1) of system (3.3), the following inequality

(S)

Iz, (to, Zo: 8) 2 << G (x0) L Nit—ty) (s==1,..., m Lyt < o) (3.4)

is satisfied.

Here Vn is the determinant of the matrix corresponding to quadratic
form G, and V (si is the minor of order n — 1 obtained from determinant
Vn by deleting the sth row and the sth column. We shall consider that
matrix C is chosen such that the origin is asymptotically stable for
system (2.7). As g let us choose the negative-definite quadratic form
g(x) =~ (x, x) ==~ (x, Ix), where I is the identity matrix. Since system
(2.7) is asymptotically stable with respect to the origin, we define the
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positive-definite quadratic form G(x) = (x, Vx) such that dG/dt = g by
virtue of (2.7). The matrix V can be found [5, p. 429] from the matrix
equation

HV +VH =1 (H= A+ D(C— A4)) (3.5)

In the given case

(z, — Ix) (x, —Iz)
N = max [—(z, Iz))]= max % <— =max —
G(x)=1[ ( ) x, Vxi=1 (& Vz) (x, Vz)
Further, it is not difficult to see [5, p. 257] that N = — 1/u, where

U is the maximum eigenvalue of matrix V. By using Expression (3.4) for
the elements of the fundamental matrix of the solutions of system (2.7),
we can obtain the estimate

V. ®

n—1

1
[ fue )P < G (ey) —y—exp [~ e—w) (3:6)

where €L is the unit coordinate vector. The expression occurring on the
right-hand side of inequality (3.6) is a function of the elements of
matrix C. By minimizing this function under some restriction on the ele-
ments of matrix C, we can achieve the reduction of the elements of the
fundamental matrix of system (2.7), along with the reduction in deviation

Il zcon |l

4. Now, on the right-hand sides of system (1.2) let there act per-
sistent perturbations; then this system will have the following form

% = Az +Bu+q(t) (4.1)

where the vector o@(t) = (¢1(t), ey ¢n(t)). The family of transient
curves is given as the solution of the system of differential equations

df jdt = Cf (4.2)
For simplicity let us comsider that y(t) = 0. For this case, by

minimizing quantity (1.9), i.e. the quantity H Ax + Bu + @(t) — Cx
find that

|, we

u(z, )y = ((C—A)yz—q, b)) (it=1,..., m) (4.3)

Let us now turn our attention to the case when the control function
(4.3) can be ¢omputed by knowing the amount of perturbation only at
given instants of time t. Without any difficulty whatsoever in the con-
struction of the control functions, this permits us to consider systems
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subject to random perturbations. We shall divide every one of the control
functions (4.3) into two parts "i(l) + ut(z)

W (z, )= ((C—A)z, b), uB (W)= (—q, by

The function ui(l)(x, t) will not depend
on t if matrices A and C are constant. The
block diagram which is described by Equa-
tion (4.1) is shown in Fig. 2. Here 4 is
the object of control which realizes the re-
quired- response, B is the corrective device,
C is the feedback element. The perturba-
Pig. 2. tions @(t) enter into 4.

At the same time they are fed into the corrective device B which
selects the control action ui(z)(t). The feedback element C selects the
feedback signal ui(l)(x, t). If it is required to realize some trajectory
y(t) using a system (4.1) subject to random disturbances, then the control

action will have the following form
d
u,® (8) = (3‘? —Cy—u0, bi)

and the feedback signal remains the same. As was shown in Section 2, the
behavior of trajectory w(t), and also the constantly acting perturbations
¢(t), do not influence the choice of matrix C which is connected only
with system (1.2) itself and can be made beforehand in any fashion what-
soever,

The author thanks E.A. Barbashin for attention and guidance while
carrying out this work.
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